首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 度量几何 >> Lipschitz 分析
Questions in category: Lipschitz 分析 (Lipschitz Analysis).

局部 1-Lipschitz, 但非整体 Lipschitz 函数的例子.

Posted by haifeng on 2012-12-09 15:28:57 last update 2012-12-09 16:13:12 | Answers (1)


考虑(以极坐标表示的)带缝平面(slip plane):
\[
A:=\{(r,\theta)\ :\ 0<r<\infty,\ -\pi<\theta<\pi\}\subset\mathbb{R}^2
\]
函数
\[
(r,\theta)\mapsto(r,\theta/2),\quad A\rightarrow\mathbb{R}^2,
\]
是局部 1-Lipschitz 的, 但不是整体 Lipschitz 的(按照 $\mathbb{R}^n$ 中的距离).

这个例子展示了问题970中拟凸条件与距离的相关性.